Mathematical Modeling of Competition and Coexistence of Phytoplankton Species

Central Washington University
Talk Abstract
Microscopic phytoplankton form the basis of the food chain in the earth’s oceans. A system of differential equations relates phytoplankton population and nutrient concentration in an isolated environment. The equations were modeled with MATLAB. I conducted sensitivity analyses to determine the relationships between the system of differential equations, and their respective parameters, on phytoplankton behavior. I explored the dynamics of competition and coexistence between multiple species with multiple nutrients in the system. I was able to predict competitive exclusion, and when multiple species could reach states of coexistence when the equations reach equilibrium.
Talk Subject
Mathematics Applications in the Sciences
Time Slot
Room Number
STAG 270